
747

Adapting Distributed Scientific Applications
to Run-Time Network Conditions�

Masha Sosonkina

Ames Laboratory and Iowa State University, Ames IA 50010
masha@scl.ameslab.gov

Abstract. High-performance applications place great demands on computation
and communication resources of distributed computing platforms. If the avail-
ability of resources changes dynamically, the application performance may suffer,
which is especially true for clusters. Thus, it is desirable to make an application
aware of system run-time changes and to adapt it dynamically to the new condi-
tions. We show how this may be done using a helper tool (middleware NICAN).
In our experiments, NICAN implements a packet probing technique to detect
contention on cluster nodes while a distributed iterative linear system solver from
the pARMS package is executing. Adapting the solver to the discovered network
conditions may result in faster iterative convergence.

1 Introduction

A typical high-performance scientific application places high demands on the computa-
tional power and communication subsystem of a distributed computing platform. It has
been recorded [12] that cluster computing environments can successfully meet these de-
mands and attain the performance comparable to supercomputers. However, because of
the possibly heterogeneous nature of clusters, such performance enhancing techniques
as load balancing or non-trivial processor mapping become of vital importance. In ad-
dition, the resources available to the application may vary dynamically at a run-time,
creating imbalanced computation and communication. This imbalance introduces idle
time on the “fastest” processors at the communication points after each computational
phase. Taking into consideration an iterative pattern of computation/communication
interchange, it could be beneficial for a distributed application to be aware of the dy-
namic system conditions present on the processors it is mapped too. Dynamic system
conditions could include the load on the CPU, the amount of memory available, or the
overhead associated with network communication. There have been many tools (e.g.,
[1, 5]) created to help learn about the conditions present. One of the requirements for
such tools is to provide an easy-to-use interface to scientific applications, which also
translates and filters the low-level detailed system information into categories mean-
ingful to applications. For a scientific application, in which the goal is to model and
solve a physical problem rather than to investigate the computer system performance,

� This work was supported in part by NSF under grants NSF/ACI-0000443, NSF/ACI-0305120,
and NSF/INT-0003274, in part by the Minnesota Supercomputing Institute, and in part by the
U.S. Department of Energy under Contract W-7405-ENG-82.

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 747–755, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.3 Optimize For Fast Web View: Yes Embed Thumbnails: No Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [2400 2400] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 610 dpi Compression: Yes Compression Type: ZIP Bits Per Pixel: 8 BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 1220 dpi Compression: Yes Compression Type: ZIP Bits Per Pixel: 8 BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 2400 dpi Downsampling For Images Above: 3600 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Leave Color Unchanged Intent: DefaultDevice-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: No Transfer Functions: Apply Preserve Halftone Information: NoADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: No Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: Yes ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: Yes Log DSC Warnings: No Resize Page and Center Artwork for EPS Files: Yes Preserve EPS Information From DSC: Yes Preserve OPI Comments: No Preserve Document Information From DSC: YesOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /FlateEncode /Optimize true /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Gray Gamma 2.2) /NeverEmbed [] /GrayImageDownsampleThreshold 2.03333 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages false /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth 8 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Remove /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.01667 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth 8 /ColorImageResolution 600 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages false /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 600 /ColorImageFilter /FlateEncode /PreserveHalftoneInfo false /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams true>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [2400 2400]>> setpagedevice

748 Masha Sosonkina

such an interface is very important. It also constitutes a major reason why inserting
“performance recording hooks” directly into application’s code may not be viable for a
wide range of applications and for a multitude of computing system parameters. Thus
the usage of a helper middleware is justified. When used at application’s run-time, the
middleware must be light-weight contrary to typical throughput benchmarks or operat-
ing system calls, which may heavily compete with the application for network or system
resources.

In this paper (Section 3) we outline a network probing technique that, by means
of sending carefully chosen trains of small packets, attempts to discover network con-
tention without exhibiting the overhead inherent to network throughput benchmarks [9].
A light-weight technique may be used simultaneously with the computational stage of
a scientific application to examine the communication subsystem without hindering the
application performance. Section 2 presents a brief description of a proposed earlier
framework that enables adaptive capabilities of scientific applications during the run-
time. In Section 4, we consider a case study of determining dynamic network conditions
while a parallel linear system solution solver pARMS is executing. A short summary is
provided in Section 5.

2 Enabling Runtime Adaptivity of Applications

Network Information Conveyer and Application Notification (NICAN) is a framework
which enables adaptation functionality of distributed applications [10]. The main idea
is to decouple the process of analyzing network information from the execution of the
parallel application, while providing the application with critical network knowledge
in a timely manner. This enables non-intrusive interaction with the application and low
overhead of the communication middleware. NICAN and the application interact ac-
cording to a register and notify paradigm: the application issues a request to NICAN
specifying the parameters it is interested in, and NICAN informs the application of
the critical changes in these parameters. The application adaptation may be triggered
by NICAN when certain resource conditions are present in the system. When the dis-
tributed application starts executing, each process starts a unique copy of NICAN as a
child thread. This implementation is particularly useful in a heterogeneous environment
because there is no requirement that the NICAN processes be homogeneous or even be
running on the same type of machine. The process of monitoring a requested network
parameter is separated from the other functions, such as notification, and is encapsulated
into a module that can be chosen depending on the network type, network software con-
figuration, and the type of network information requested by the application. Figure 1
depicts NICAN’s functionality as the interaction of four major entities.

NICAN reads the resource monitoring requests using an XML interface, which en-
ables diverse specifications and types of the application requests. Another functionality
of NICAN is to call the adaptation functions provided when appropriate. If a particular
resource condition is never met, then the adaptation is never triggered and the applica-
tion will proceed as if NICAN had never been started. To make NICAN versatile and
to provide a wide variety of monitoring capabilities, it is driven by dynamically loaded
modules.

Adapting Distributed Scientific Applications to Run-Time Network Conditions 749

Application ProcessNICAN Interface
Uses

Module Manager Adaptation Handler
Invokes

Modifies

Module 1 ... Module n

ProvidesCreates

Controls

Fig. 1. Interaction of NICAN’s components

/* Include the NICAN header file */
#include <nican.h>
/* The handlers are declared in the global scope */
void HandlerOne(const char* data) {/* empty */};
void HandlerTwo(const char* data) {/* empty */};
/* The application’s main function */
void main() {

const char xmlFile[] = "/path/to/xmlFile";
/* Start NICAN’s monitoring */
Nican_Initialize(xmlFile,

2,
"HandlerOne", &HandlerOne,
"HandlerTwo", &HandlerTwo);

/* Application code runs while NICAN operates */
/* ... */
/* Terminate NICAN’s monitoring */
Nican_Finalize(); }

Fig. 2. A trivial example of how to use NICAN

Figure 2 demonstrates how easy it is for the application to use NICAN. First the
application must include a header file with the declarations for the NICAN interface
functions. There are two adaptation handlers specified, HandlerOne and HandlerTwo,
which for this trivial example are empty functions. The path to the XML file is speci-
fied and passed as the first parameter to Nican Initialize. The application is informing
NICAN of two adaptation handlers. Nican Initialize will start the threads required for
NICAN to operate and return immediately, allowing it to run simultaneously with the
application. When the application is finished, or does not require the use of NICAN any
longer, it calls the Nican Finalize function, which returns after all the threads related to
NICAN have been safely terminated.

3 Packet Probing to Examine Communication Overhead

In a cluster, we can consider two types of network transmissions following the terminol-
ogy given in [2]. One type is latency bound transmission, and the other is a bandwidth
bound transmission. A latency bound transmission is one where the transmission time
required is dependent only on a one-time cost for processing any message. By using

750 Masha Sosonkina

very small messages, on the order of a few hundred bytes, the cost of processing the
message is reduced to a minimum. A bandwidth bound transmission is one where the
time required is dependent on not just a one-time cost, but also the bandwidth available
(see e.g., [9]). Typically bandwidth bound transmissions are comprised of large mes-
sages, which cause additional overhead while those messages are queued on network
interfaces and processed. Latency bound transmissions have the attractive property that
they do not cause a significant software overhead on the protocol stack of the machine
processing the message. Thus, latency bound transmissions may be used as a means
of communication subsystem performance analysis at application’s runtime. This can
be done while a distributed application performs its computational phase so as to not
interfere with the application’s communications. To better capture what conditions are
present on a neighboring node, we use a train of packets rather than only two. This al-
lows more time for the conditions to influence our train and is a trade-off between only
two packets and flooding the network. We can use the notion of initial gap similar to
the LogP model [3] to describe what happens to the probing packets. By introducing
different types of load on the source and sink nodes we can affect the gaps recorded
at the sink in a way that can be used to determine what type of load is present. The
two metrics we will be using are the average gaps recorded at the sink and the standard
deviation of those gaps.

3.1 Example of Probing: Fast Ethernet Networks

The cluster for our experiments is a collection of nine dual-processor nodes connected
via 100Mbps Ethernet links by means of a shared hub. We send a train of packets
directly from the source to the sink and perform timing on the sink. We vary the size of
the packets across trials, but keep the number of packets constant. For each packet size
we sent 100 trains of 64 packets and computed the average arrival time and the standard
deviation for the distribution of arrival times. Note that 100 trains would be too many
to be used in actual probing, as it is too close to “flooding” the network, but was used in
our derivation of the technique described in this section. The actual amount of probing
will depend on the time warranted by the computational phase of the application. We
have conducted experiments that indicate using a single train of 32 packets may be
sufficient. To add an additional load on the source and sink, we generated 30Mbps UDP
network transmissions and external 98% CPU and memory loads on a node. Although
we have performed a series of experiments to detect possible (external load,
competing flow) combinations, we present here only a few illustrative cases. For
more details see [11]. In particular, Figure 3 shows the case when no adverse conditions
are present on the nodes. As packets grow larger they introduce a larger load on the
network stacks. This is clearly the case with Figure 3 depicting a distinct bend formed
at the point where the probes are 400B in size. We can approximate this point using
the rate of increase for the arrival gaps as the probes get larger. A different situation is
shown in Figure 4 where there is no pronounced bend. The “strength” of this bend can
be used to help classify what conditions may be present. The location of the bend can
be determined during the first set of probes, or by executing the proposed algorithm on
a given computing system a priori before the actual application is run. Once this point
is known we can narrow the scope of the probe sizes to reduce the impact and time
required for the dynamic analysis.

Adapting Distributed Scientific Applications to Run-Time Network Conditions 751

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 3. No competing CPU load or network
flows on either node

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 4. No CPU load and 30 Mbps flow leaving
the source node

In each experiment the gap introduced on the source between the packets, at the user
level, was constant with very little deviation. Therefore any deviation measured at the
sink was due to an external influence on our probes. Depending on what type of influ-
ence is placed on the source and sink we observe different amounts of deviation, which
we use as the second factor to classify the network conditions present. In particular, for
a given network type, we have constructed a decision tree (see [11]), tracing which one
may detect seven possible cases of network or CPU related load on the source and sink
nodes based on recorded deviations and average gap measurements.

4 Case Study: Runtime Changes in Communication Overhead
of pARMS

pARMS is a parallel version of the Algebraic Recursive Multilevel Solver (ARMS)
[8] to solve a general large-scale sparse linear system Ax = b, where A is a constant
coefficient matrix, x is a vector of unknowns, and b is the solution vector. To solve such
a system iteratively, one preconditions the system of equations into a form that is easier
to solve. A commonly used (parallel) preconditioning technique, due to its simplicity,
is Additive Schwarz procedure (see, e.g, [7]). In the iteration i, i = 1, . . . , m, given
the current solution xi, Additive Schwarz computes the residual error ri = b − Axi.
Once ri is known, δi is found by solving Aδi = ri. To obtain the next iterate xi+1,
we simply compute xi+1 = xi + δi and repeat the process until |xi+1 − xi| < ε,
where ε is a user defined quantity. The Additive Schwarz procedure was used for all
the experiments discussed here. To solve linear systems on a cluster of computers it is
common to partition the problem using a graph partitioner and assign a subdomain to
each processor. Each processor then assembles only the local equations associated with
the elements assigned to it.

Our motivation for using packet probing is to find congested links in the underlying
network of a cluster and to alert pARMS whenever its own adaptive mechanisms need to
be invoked. To achieve this goal we have developed a module for NICAN that performs
packet probing using the techniques described in Section 3. The design of MPI [4]
allows pARMS to start a unique instance of NICAN in each task, each of which sends

752 Masha Sosonkina

probes independently. Discovering network overhead on neighboring nodes has proven
useful [6] for the overall performance of pARMS. Thus, ideally, we wish to have each
node learn the conditions of the entire system.

We will demonstrate this NICAN module using a four-node pARMS computation,
with each node probing a fifth node free of any network overhead. By using the vari-
ous options provided by the module this situation is easily created using an XML file.
The 4pack cluster with 32 dual Macintosh G4 nodes, located at the Scalable Comput-
ing Laboratory in Iowa State University, has been used for the experiments. Sixteen
4pack nodes have a single 400MHz CPU and the remaining have dual 700MHz CPUs.
We used the faster nodes with Fast Ethernet interconnection for both our probes and
MPI traffic because an implementation of NICAN packet probing module on Ethernet
networks is already available. Figure 5 illustrates how the experiment is laid out. The
squares represent the nodes used, with the label indicating the hostname of the ma-
chine. pARMS is mapped to node0,. . .,node3; the competing flows (called Iperf
traffic) are entering node iperf dest; and the probes sent from the pARMS
nodes, are sinking into probe sink.

Fig. 5. Cluster node interaction used for the experiments

Consider the elliptic partial differential equation (PDE)

− ∆u + 100
∂

∂x
(exyu) + 100

∂

∂y

(
e−xyu

) − 1, 000u = f (4.1)

solved on a two-dimensional rectangular (regular) grid with Dirichlet boundary condi-
tions. It is discretized with a five-point centered finite-difference scheme on a nx × ny

grid, excluding boundary points. The mesh is mapped to a virtual px×py grid of proces-
sors, such that a subrectangle of rx = nx/px points in the x direction and ry = ny/py

points in the y direction are mapped to a processor. In the following experiments, the
mesh size in each processor is kept constant at rx = ry = 40. In our experiments,
four processors (px = py = 2) have been used, thus resulting in a problem of the total
size 6,400. This problem is solved by FGMRES(20) using Additive Schwarz pARMS

Adapting Distributed Scientific Applications to Run-Time Network Conditions 753

preconditioning with one level of overlap and four inner iterations needed to solve the
local subproblem with GMRES preconditioned with ILUT (see [7]).

Each MPI node will use NICAN’s packet probing module to send probing packets
to a fifth node known to be free of any network load. Then, at pARMS runtime, any net-
work flow detected is indicative of a load on a node involved in the computation. The ex-
perimental procedure is outlined in Table 1. The “Phase” column represents the different
phases of the experiment an the “Conditions present” column details what conditions
were present in addition to the pARMS-related traffic. Table 1 also lists the average
times required to complete the distributed sparse matrix-vector multiplication (called
SpMxV) during each phase of this experiment (see columns node0,. . .,node3). The
impact of competing network traffic is evident in how the unaffected nodes spend more
time completing SpMxV. The extra time is actually accrued while they wait for the node
affected by the network flow to transmit the required interface variables. The affected
node does not perceive as long a waiting time because when it finally requests the in-
terface unknowns from a neighbor, that neighbor can immediately send them. When we
introduce the two network flows at the phase p2, both node0 and node2 experience
less waiting time, but we can also see how much impact competing network traffic can
exert on pARMS. The average waiting time for unaffected nodes in this case has nearly
tripled compared with p0, increasing the overall solution time as a result. We only show
the times for SpMxV because that is the specific source of increased execution time
when additional network traffic is exerted upon a node in the computation. Once we are
able to detect and monitor how much waiting time is incurred by each node a suitable
adaptation can be developed to help balance the computation, and improve the perfor-
mance in spite of competing network traffic [6]. The gist of the pARMS adaptation
procedure is to increase the number of inner Additive Schwarz iterations performed
locally in the fast processors, i.e., in those processors that incur idle time the most. For
example, node1 and node3 are such processors in phase p2. The amount of increase
is determined experimentally and may be adjusted on subsequent outer iterations, such
that the pARMS execution is kept balanced. With more inner iterations, the accuracy
of the local solution becomes higher and will eventually propagate to the computation
of the overall solution in an outer (global) iteration, thus reducing the total number of
outer iterations. Figure 6, taken from [6] for the measurements on an IBM SP, shows the
validity of suggested pARMS adaptation. In particular, with the increase of the num-
ber of inner iterations, the waiting time on all the processors becomes more balanced,
while the total solution time and the number of outer iterations decrease. Figures 7 and
8 demonstrate how the gaps recorded on the nodes are used to determine the conditions
present. In Figure 7 the bend discussed in Section 3 is clearly visible when the probes
transition from 350B to 400B. Also, because we are using only 32 probing packets the
deviation is larger than that observed in Figure 3. In Figure 8 we see the effect that
the competing flow has on the probing packets. The distinct bend is no longer present,
and by tracing through the decision tree corresponding to the given network type, we
can determine that there is a competing flow leaving the source. We only illustrate the
results for these two cases but similar plots can be constructed to show how the other
conditions are detected.

754 Masha Sosonkina

Table 1. Phases of network conditions and average times (s) for SpMxV at each phase during
pARMS execution

Phase Conditions present node0 node1 node2 node3

p0 No adverse conditions present .0313 .0330 .0331 .0398

p1 40 Mbps flow from node0 .0293 .0698 .0899 .0778

p2 40 Mbps flows from node0 and node2 .0823 .1089 .0780 .1157

p3 40 Mbps flow from node2 .0668 .0847 .0291 .0794

p4 No adverse conditions present .0293 .0319 .0474 .0379

Adapt. Outer Solution, s

yes/no Iter.

no 5,000 4,887.78

yes 432 398.67

1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Processor ranks

T
im

e,
 s

ec
PDE problem: Waiting time per processor

No adaptation
Adaptation

Fig. 6. Adaptation of pARMS on a regular-grid problem

 0

 20

 40

 60

 80

 100

 200 250 300 350 400 450 500 550 600

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 7. The probe gaps observed by node0 at
phase p0 in Table 1

 0

 20

 40

 60

 80

 100

 200 250 300 350 400 450 500 550 600

G
ap

 M
ea

su
re

d
(u

s)

Probe Size (B)

Avg arrival gap
Std dev of gaps

Fig. 8. The probe gaps observed by node0 at
phase p1 in Table 1

5 Conclusions

We have described a way to make distributed scientific applications network- and
system-aware by interacting with an easy-to-use external tool rather than by obtain-
ing and processing the low-level system information directly in the scientific code.
This approach is rather general, suiting a variety of applications and computing plat-

Adapting Distributed Scientific Applications to Run-Time Network Conditions 755

forms, and causes no excessive overhead. The case study has been presented in which
the NICAN middleware serves as an interface between parallel Algebraic Recursive
Multilevel Solver (pARMS) and the underlying network. We show how a light-weight
packet probing technique is used by NICAN to detect dynamically network contention.
In particular, NICAN is able to detect and classify the presence of competing flows in
the nodes to which pARMS is mapped. Upon this discovery, pARMS is prompted to
engage its own adaptive mechanisms leading to a better parallel performance.

References

1. D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan. System support for
bandwidth management and content adaptation in Internet applications. In Proceedings of
4th Symposium on Operating Systems Design and Implementation, pages 213–226, 2000.

2. C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome,
and K. Yelick. An evaluation of current high-performance networks. In Proceedings of In-
ternational Parallel and Distributed Processing Symposium (IPDPS’03), 2003.

3. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of parallel computation. In Principles Prac-
tice of Parallel Programming, pages 1–12, 1993.

4. Message Passing Interface Forum. MPI: A message-passing interface standard. Technical
Report Computer Science Department Technical Report CS-94-230, University of Ten-
nessee, Knoxville, TN, May 5 1994.

5. J. Hollingsworth and P. Keleher. Prediction and adaptation in Active Harmony. Cluster Com-
puting, 2(3):195–205, 1999.

6. D. Kulkarni and M. Sosonkina. A framework for integrating network information into dis-
tributed iterative solution of sparse linear systems. In José M. L. M. Palma, et al. editors,
High Performance Computing for Computational Science - VECPAR 2002, 5th International
Conference, Porto, Portugal, June 26-28, 2002, Selected Papers and Invited Talks, volume
2565 of Lecture Notes in Computer Science, pages 436–450. Springer, 2003.

7. Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha, PA,
2003.

8. Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general
sparse linear systems. Technical Report Minnesota Supercomputing Institute Technical Re-
port umsi-99-107, University of Minnesota, 1999.

9. Q. Snell, A. Mikler, and J. Gustafson. NetPIPE: A network protocol independent perfor-
mance evaluator. In IASTED International Conference on Intelligent Information Manage-
ment and Systems, June 1996.

10. M. Sosonkina and G. Chen. Design of a tool for providing network information to distributed
applications. In Parallel Computing Technologies PACT2001, volume 2127 of Lecture Notes
in Computer Science, pages 350–358. Springer-Verlag, 2001.

11. S. Storie and M. Sosonkina. Packet probing as network load detection for scientific applica-
tions at run-time. In IPDPS 2004 proceedings, 2004. 10 pages.

12. Top 500 supercomputer sites. http://www.top500.org/.

	Adapting Distributed Scientific Applications to Run-Time Network Conditions
	1 Introduction
	2 Enabling Runtime Adaptivity of Applications
	3 Packet Probing to Examine Communication Overhead
	3.1 Example of Probing: Fast Ethernet Networks

	4 Case Study: Runtime Changes in Communication Overhead of pARMS
	5 Conclusions
	References

